CDC Guideline for Prescribing Opioids for Chronic Pain: 2015 Recommendations

The recommendations are grouped into three areas for consideration:

  • Determining when to initiate or continue opioids for chronic pain.
  • Opioid selection, dosage, duration, follow-up, and discontinuation.
  • Assessing risk and addressing harms of opioid use.

There are 12 recommendations (Box 1). Each recommendation is followed by a rationale for the recommendation, with considerations for implementation noted. In accordance with the ACIP GRADE process, CDC based the recommendations on consideration of the clinical evidence, contextual evidence (including benefits and harms, values and preferences, resource allocation), and expert opinion. For each recommendation statement, CDC notes the recommendation category (A or B) and the type of the evidence (1, 2, 3, or 4) supporting the statement (Box 2). Expert opinion is reflected within each of the recommendation rationales. While there was not an attempt to reach consensus among experts, experts from the Core Expert Group and from the Opioid Guideline Workgroup (“experts”) expressed overall, general support for all recommendations. Where differences in expert opinion emerged for detailed actions within the clinical recommendations or for implementation considerations, CDC notes the differences of opinion in the supporting rationale statements.

Category A recommendations indicate that most patients should receive the recommended course of action; category B recommendations indicate that different choices will be appropriate for different patients, requiring clinicians to help patients arrive at a decision consistent with patient values and preferences and specific clinical situations. Consistent with the ACIP (47) and GRADE process (48), category A recommendations were made, even with type 3 and 4 evidence, when there was broad agreement that the advantages of a clinical action greatly outweighed the disadvantages based on a consideration of benefits and harms, values and preferences, and resource allocation. Category B recommendations were made when there was broad agreement that the advantages and disadvantages of a clinical action were more balanced, but advantages were significant enough to warrant a recommendation. All recommendations are category A recommendations, with the exception of recommendation 10, which is rated as category B. Recommendations were associated with a range of evidence types, from type 2 to type 4.

In summary, the categorization of recommendations was based on the following assessment:

  • No evidence shows a long-term benefit of opioids in pain and function versus no opioids for chronic pain with outcomes examined at least 1 year later (with most placebo-controlled randomized trials ≤6 weeks in duration).
  • Extensive evidence shows the possible harms of opioids (including opioid use disorder, overdose, and motor vehicle injury).
  • Extensive evidence suggests some benefits of nonpharmacologic and nonopioid pharmacologic treatments compared with long-term opioid therapy, with less harm.

Determining When to Initiate or Continue Opioids for Chronic Pain

1. Nonpharmacologic therapy and nonopioid pharmacologic therapy are preferred for chronic pain. Clinicians should consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, they should be combined with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate (recommendation category: A, evidence type: 3).

Patients with pain should receive treatment that provides the greatest benefits relative to risks. The contextual evidence review found that many nonpharmacologic therapies, including physical therapy, weight loss for knee osteoarthritis, psychological therapies such as CBT, and certain interventional procedures can ameliorate chronic pain. There is high-quality evidence that exercise therapy (a prominent modality in physical therapy) for hip (100) or knee (99) osteoarthritis reduces pain and improves function immediately after treatment and that the improvements are sustained for at least 2–6 months. Previous guidelines have strongly recommended aerobic, aquatic, and/or resistance exercises for patients with osteoarthritis of the knee or hip (176). Exercise therapy also can help reduce pain and improve function in low back pain and can improve global well-being and physical function in fibromyalgia (98,101). Multimodal therapies and multidisciplinary biopsychosocial rehabilitation-combining approaches (e.g., psychological therapies with exercise) can reduce long-term pain and disability compared with usual care and compared with physical treatments (e.g., exercise) alone. Multimodal therapies are not always available or reimbursed by insurance and can be time-consuming and costly for patients. Interventional approaches such as arthrocentesis and intraarticular glucocorticoid injection for pain associated with rheumatoid arthritis (117) or osteoarthritis (118) and subacromial corticosteroid injection for rotator cuff disease (119) can provide short-term improvement in pain and function. Evidence is insufficient to determine the extent to which repeated glucocorticoid injection increases potential risks such as articular cartilage changes (in osteoarthritis) and sepsis (118). Serious adverse events are rare but have been reported with epidural injection (120).

Several nonopioid pharmacologic therapies (including acetaminophen, NSAIDs, and selected antidepressants and anticonvulsants) are effective for chronic pain. In particular, acetaminophen and NSAIDs can be useful for arthritis and low back pain. Selected anticonvulsants such as pregabalin and gabapentin can improve pain in diabetic neuropathy and post-herpetic neuralgia (contextual evidence review). Pregabalin, gabapentin, and carbamazepine are FDA-approved for treatment of certain neuropathic pain conditions, and pregabalin is FDA approved for fibromyalgia management. In patients with or without depression, tricyclic antidepressants and SNRIs provide effective analgesia for neuropathic pain conditions including diabetic neuropathy and post-herpetic neuralgia, often at lower dosages and with a shorter time to onset of effect than for treatment of depression (see contextual evidence review). Tricyclics and SNRIs can also relieve fibromyalgia symptoms. The SNRI duloxetine is FDA-approved for the treatment of diabetic neuropathy and fibromyalgia. Because patients with chronic pain often suffer from concurrent depression (144), and depression can exacerbate physical symptoms including pain (177), patients with co-occurring pain and depression are especially likely to benefit from antidepressant medication (see Recommendation 8). Nonopioid pharmacologic therapies are not generally associated with substance use disorder, and the numbers of fatal overdoses associated with nonopioid medications are a fraction of those associated with opioid medications (contextual evidence review). For example, acetaminophen, NSAIDs, and opioid pain medication were involved in 881, 228, and 16,651 pharmaceutical overdose deaths in the United States in 2010 (178). However, nonopioid pharmacologic therapies are associated with certain risks, particularly in older patients, pregnant patients, and patients with certain co-morbidities such as cardiovascular, renal, gastrointestinal, and liver disease (see contextual evidence review). For example, acetaminophen can be hepatotoxic at dosages of > 3-4 grams/day and at lower dosages in patients with chronic alcohol use or liver disease (109). NSAID use has been associated with gastritis, peptic ulcer disease, cardiovascular events (111,112), and fluid retention, and most NSAIDs (choline magnesium trilisate and selective COX-2 inhibitors are exceptions) interfere with platelet aggregation (179). Clinicians should review FDA-approved labeling including boxed warnings before initiating treatment with any pharmacologic therapy.

Although opioids can reduce pain during short-term use, the clinical evidence review found insufficient evidence to determine whether pain relief is sustained and whether function or quality of life improves with long-term opioid therapy (KQ1). While benefits for pain relief, function, and quality of life with long-term opioid use for chronic pain are uncertain, risks associated with long-term opioid use are clearer and significant. Based on the clinical evidence review, long-term opioid use for chronic pain is associated with serious risks including increased risk for opioid use disorder, overdose, myocardial infarction, and motor vehicle injury (KQ2). At a population level, more than 165,000 persons in the United States have died from opioid pain-medication-related overdoses since 1999 (see Contextual Evidence Review).

Integrated pain management requires coordination of medical, psychological, and social aspects of health care and includes primary care, mental health care, and specialist services when needed (180). Nonpharmacologic physical and psychological treatments such as exercise and CBT are approaches that encourage active patient participation in the care plan, address the effects of pain in the patient’s life, and can result in sustained improvements in pain and function without apparent risks. Despite this, these therapies are not always or fully covered by insurance, and access and cost can be barriers for patients. For many patients, aspects of these approaches can be used even when there is limited access to specialty care. For example, previous guidelines have strongly recommended aerobic, aquatic, and/or resistance exercises for patients with osteoarthritis of the knee or hip (176) and maintenance of activity for patients with low back pain (110). A randomized trial found no difference in reduced chronic low back pain intensity, frequency or disability between patients assigned to relatively low-cost group aerobics and individual physiotherapy or muscle reconditioning sessions (181). Low-cost options to integrate exercise include brisk walking in public spaces or use of public recreation facilities for group exercise. CBT addresses psychosocial contributors to pain and improves function (97). Primary care clinicians can integrate elements of a cognitive behavioral approach into their practice by encouraging patients to take an active role in the care plan, by supporting patients in engaging in beneficial but potentially anxiety-provoking activities, such as exercise (179), or by providing education in relaxation techniques and coping strategies. In many locations, there are free or low-cost patient support, self-help, and educational community-based programs that can provide stress reduction and other mental health benefits. Patients with more entrenched anxiety or fear related to pain, or other significant psychological distress, can be referred for formal therapy with a mental health specialist (e.g., psychologist, psychiatrist, clinical social worker). Multimodal therapies should be considered for patients not responding to single-modality therapy, and combinations should be tailored depending on patient needs, cost, and convenience.

To guide patient-specific selection of therapy, clinicians should evaluate patients and establish or confirm the diagnosis. Detailed recommendations on diagnosis are provided in other guidelines (110,179), but evaluation should generally include a focused history, including history and characteristics of pain and potentially contributing factors (e.g., function, psychosocial stressors, sleep) and physical exam, with imaging or other diagnostic testing only if indicated (e.g., if severe or progressive neurologic deficits are present or if serious underlying conditions are suspected) (110,179). For complex pain syndromes, pain specialty consultation can be considered to assist with diagnosis as well as management. Diagnosis can help identify disease-specific interventions to reverse or ameliorate pain; for example, improving glucose control to prevent progression of diabetic neuropathy; immune-modulating agents for rheumatoid arthritis; physical or occupational therapy to address posture, muscle weakness, or repetitive occupational motions that contribute to musculoskeletal pain; or surgical intervention to relieve mechanical/compressive pain (179). The underlying mechanism for most pain syndromes can be categorized as neuropathic (e.g., diabetic neuropathy, postherpetic neuralgia, fibromyalgia), or nociceptive (e.g., osteoarthritis, muscular back pain). The diagnosis and pathophysiologic mechanism of pain have implications for symptomatic pain treatment with medication. For example, evidence is limited or insufficient for improved pain or function with long-term use of opioids for several chronic pain conditions for which opioids are commonly prescribed, such as low back pain (182), headache (183), and fibromyalgia (184). Although NSAIDs can be used for exacerbations of nociceptive pain, other medications (e.g., tricyclics, selected anticonvulsants, or transdermal lidocaine) generally are recommended for neuropathic pain. In addition, improvement of neuropathic pain can begin weeks or longer after symptomatic treatment is initiated (179). Medications should be used only after assessment and determination that expected benefits outweigh risks given patient-specific factors. For example, clinicians should consider falls risk when selecting and dosing potentially sedating medications such as tricyclics, anticonvulsants, or opioids, and should weigh risks and benefits of use, dose, and duration of NSAIDs when treating older adults as well as patients with hypertension, renal insufficiency, or heart failure, or those with risk for peptic ulcer disease or cardiovascular disease. Some guidelines recommend topical NSAIDs for localized osteoarthritis (e.g., knee osteoarthritis) over oral NSAIDs in patients aged ≥ 75 years to minimize systemic effects (176).

Experts agreed that opioids should not be considered first-line or routine therapy for chronic pain (i.e., pain continuing or expected to continue >3 months or past the time of normal tissue healing) outside of active cancer, palliative, and end-of-life care, given small to moderate short-term benefits, uncertain long-term benefits, and potential for serious harms; although evidence on long-term benefits of nonopioid therapies is also limited, these therapies are also associated with short-term benefits, and risks are much lower. This does not mean that patients should be required to sequentially “fail” nonpharmacologic and nonopioid pharmacologic therapy before proceeding to opioid therapy. Rather, expected benefits specific to the clinical context should be weighed against risks before initiating therapy. In some clinical contexts (e.g., headache or fibromyalgia), expected benefits of initiating opioids are unlikely to outweigh risks regardless of previous nonpharmacologic and nonopioid pharmacologic therapies used. In other situations (e.g., serious illness in a patient with poor prognosis for return to previous level of function, contraindications to other therapies, and clinician and patient agreement that the overriding goal is patient comfort), opioids might be appropriate regardless of previous therapies used. In addition, when opioid pain medication is used, it is more likely to be effective if integrated with nonpharmacologic therapy. Nonpharmacologic approaches such as exercise and CBT should be used to reduce pain and improve function in patients with chronic pain. Nonopioid pharmacologic therapy should be used when benefits outweigh risks and should be combined with nonpharmacologic therapy to reduce pain and improve function. If opioids are used, they should be combined with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate, to provide greater benefits to patients in improving pain and function.

2. Before starting opioid therapy for chronic pain, clinicians should establish treatment goals with all patients, including realistic goals for pain and function, and should consider how opioid therapy will be discontinued if benefits do not outweigh risks. Clinicians should continue opioid therapy only if there is clinically meaningful improvement in pain and function that outweighs risks to patient safety (recommendation category: A, evidence type: 4).

The clinical evidence review found insufficient evidence to determine long-term benefits of opioid therapy for chronic pain and found an increased risk for serious harms related to long-term opioid therapy that appears to be dose-dependent. In addition, studies on currently available risk assessment instruments were sparse and showed inconsistent results (KQ4). The clinical evidence review for the current guideline considered studies with outcomes examined at ≥1 year that compared opioid use versus nonuse or placebo. Studies of opioid therapy for chronic pain that did not have a nonopioid control group have found that although many patients discontinue opioid therapy for chronic noncancer pain due to adverse effects or insufficient pain relief, there is weak evidence that patients who are able to continue opioid therapy for at least 6 months can experience clinically significant pain relief and insufficient evidence that function or quality of life improves (185). These findings suggest that it is very difficult for clinicians to predict whether benefits of opioids for chronic pain will outweigh risks of ongoing treatment for individual patients. Opioid therapy should not be initiated without consideration of an “exit strategy” to be used if the therapy is unsuccessful.

Experts agreed that before opioid therapy is initiated for chronic pain outside of active cancer, palliative, and end-of-life care, clinicians should determine how effectiveness will be evaluated and should establish treatment goals with patients. Because the line between acute pain and initial chronic pain is not always clear, it might be difficult for clinicians to determine when they are initiating opioids for chronic pain rather than treating acute pain. Pain lasting longer than 3 months or past the time of normal tissue healing (which could be substantially shorter than 3 months, depending on the condition) is generally no longer considered acute. However, establishing treatment goals with a patient who has already received opioid therapy for 3 months would defer this discussion well past the point of initiation of opioid therapy for chronic pain. Clinicians often write prescriptions for long-term use in 30-day increments, and opioid prescriptions written for ≥30 days are likely to represent initiation or continuation of long-term opioid therapy. Before writing an opioid prescription for ≥30 days, clinicians should establish treatment goals with patients. Clinicians seeing new patients already receiving opioids should establish treatment goals for continued opioid therapy. Although the clinical evidence review did not find studies evaluating the effectiveness of written agreements or treatment plans (KQ4), clinicians and patients who set a plan in advance will clarify expectations regarding how opioids will be prescribed and monitored, as well as situations in which opioids will be discontinued or doses tapered (e.g., if treatment goals are not met, opioids are no longer needed, or adverse events put the patient at risk) to improve patient safety.

Experts thought that goals should include improvement in both pain relief and function (and therefore in quality of life). However, there are some clinical circumstances under which reductions in pain without improvement in physical function might be a more realistic goal (e.g., diseases typically associated with progressive functional impairment or catastrophic injuries such as spinal cord trauma). Experts noted that function can include emotional and social as well as physical dimensions. In addition, experts emphasized that mood has important interactions with pain and function. Experts agreed that clinicians may use validated instruments such as the three-item “Pain average, interference with Enjoyment of life, and interference with General activity” (PEG) Assessment Scale (186) to track patient outcomes. Clinically meaningful improvement has been defined as a 30% improvement in scores for both pain and function (187). Monitoring progress toward patient-centered functional goals (e.g., walking the dog or walking around the block, returning to part-time work, attending family sports or recreational activities) can also contribute to the assessment of functional improvement. Clinicians should use these goals in assessing benefits of opioid therapy for individual patients and in weighing benefits against risks of continued opioid therapy (see Recommendation 7, including recommended intervals for follow-up). Because depression, anxiety, and other psychological co-morbidities often coexist with and can interfere with resolution of pain, clinicians should use validated instruments to assess for these conditions (see Recommendation 8) and ensure that treatment for these conditions is optimized. If patients receiving opioid therapy for chronic pain do not experience meaningful improvements in both pain and function compared with prior to initiation of opioid therapy, clinicians should consider working with patients to taper and discontinue opioids (see Recommendation 7) and should use nonpharmacologic and nonopioid pharmacologic approaches to pain management (see Recommendation 1).

3. Before starting and periodically during opioid therapy, clinicians should discuss with patients known risks and realistic benefits of opioid therapy and patient and clinician responsibilities for managing therapy (recommendation category: A, evidence type: 3).

The clinical evidence review did not find studies evaluating effectiveness of patient education or opioid treatment plans as risk-mitigation strategies (KQ4). However, the contextual evidence review found that many patients lack information about opioids and identified concerns that some clinicians miss opportunities to effectively communicate about safety. Given the substantial evidence gaps on opioids, uncertain benefits of long-term use, and potential for serious harms, patient education and discussion before starting opioid therapy are critical so that patient preferences and values can be understood and used to inform clinical decisions. Experts agreed that essential elements to communicate to patients before starting and periodically during opioid therapy include realistic expected benefits, common and serious harms, and expectations for clinician and patient responsibilities to mitigate risks of opioid therapy.

Clinicians should involve patients in decisions about whether to start or continue opioid therapy. Given potentially serious risks of long-term opioid therapy, clinicians should ensure that patients are aware of potential benefits of, harms of, and alternatives to opioids before starting or continuing opioid therapy. Clinicians are encouraged to have open and honest discussions with patients to inform mutual decisions about whether to start or continue opioid therapy. Important considerations include the following:

  • Be explicit and realistic about expected benefits of opioids, explaining that while opioids can reduce pain during short-term use, there is no good evidence that opioids improve pain or function with long-term use, and that complete relief of pain is unlikely (clinical evidence review, KQ1).
  • Emphasize improvement in function as a primary goal and that function can improve even when pain is still present.
  • Advise patients about serious adverse effects of opioids, including potentially fatal respiratory depression and development of a potentially serious lifelong opioid use disorder that can cause distress and inability to fulfill major role obligations.
  • Advise patients about common effects of opioids, such as constipation, dry mouth, nausea, vomiting, drowsiness, confusion, tolerance, physical dependence, and withdrawal symptoms when stopping opioids. To prevent constipation associated with opioid use, advise patients to increase hydration and fiber intake and to maintain or increase physical activity. Stool softeners or laxatives might be needed.
  • Discuss effects that opioids might have on ability to safely operate a vehicle, particularly when opioids are initiated, when dosages are increased, or when other central nervous system depressants, such as benzodiazepines or alcohol, are used concurrently.
  • Discuss increased risks for opioid use disorder, respiratory depression, and death at higher dosages, along with the importance of taking only the amount of opioids prescribed, i.e., not taking more opioids or taking them more often.
  • Review increased risks for respiratory depression when opioids are taken with benzodiazepines, other sedatives, alcohol, illicit drugs such as heroin, or other opioids.
  • Discuss risks to household members and other individuals if opioids are intentionally or unintentionally shared with others for whom they are not prescribed, including the possibility that others might experience overdose at the same or at lower dosage than prescribed for the patient, and that young children are susceptible to unintentional ingestion. Discuss storage of opioids in a secure, preferably locked location and options for safe disposal of unused opioids (188).
  • Discuss the importance of periodic reassessment to ensure that opioids are helping to meet patient goals and to allow opportunities for opioid discontinuation and consideration of additional nonpharmacologic or nonopioid pharmacologic treatment options if opioids are not effective or are harmful.
  • Discuss planned use of precautions to reduce risks, including use of prescription drug monitoring program information (see Recommendation 9) and urine drug testing (see Recommendation 10). Consider including discussion of naloxone use for overdose reversal (see Recommendation 8).
  • Consider whether cognitive limitations might interfere with management of opioid therapy (for older adults in particular) and, if so, determine whether a caregiver can responsibly co-manage medication therapy. Discuss the importance of reassessing safer medication use with both the patient and caregiver.

Given the possibility that benefits of opioid therapy might diminish or that risks might become more prominent over time, it is important that clinicians review expected benefits and risks of continued opioid therapy with patients periodically, at least every 3 months (see Recommendation 7).

Opioid Selection, Dosage, Duration, Follow-Up, and Discontinuation

4. When starting opioid therapy for chronic pain, clinicians should prescribe immediate-release opioids instead of extended-release/long-acting (ER/LA) opioids (recommendation category: A, evidence type: 4).

ER/LA opioids include methadone, transdermal fentanyl, and extended-release versions of opioids such as oxycodone, oxymorphone, hydrocodone, and morphine. The clinical evidence review found a fair-quality study showing a higher risk for overdose among patients initiating treatment with ER/LA opioids than among those initiating treatment with immediate-release opioids (77). The clinical evidence review did not find evidence that continuous, time-scheduled use of ER/LA opioids is more effective or safer than intermittent use of immediate-release opioids or that time-scheduled use of ER/LA opioids reduces risks for opioid misuse or addiction (KQ3).

In 2014, the FDA modified the labeling for ER/LA opioid pain medications, noting serious risks and recommending that ER/LA opioids be reserved for “management of pain severe enough to require daily, around-the-clock, long-term opioid treatment” when “alternative treatment options (e.g., nonopioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain” and not used as “as needed” pain relievers (121). FDA has also noted that some ER/LA opioids are only appropriate for opioid-tolerant patients, defined as patients who have received certain dosages of opioids (e.g., 60 mg daily of oral morphine, 30 mg daily of oral oxycodone, or equianalgesic dosages of other opioids) for at least 1 week (189). Time-scheduled opioid use can be associated with greater total average daily opioid dosage compared with intermittent, as-needed opioid use (contextual evidence review). In addition, experts indicated that there was not enough evidence to determine the safety of using immediate-release opioids for breakthrough pain when ER/LA opioids are used for chronic pain outside of active cancer pain, palliative care, or end-of-life care, and that this practice might be associated with dose escalation.

Abuse-deterrent technologies have been employed to prevent manipulation intended to defeat extended-release properties of ER/LA opioids and to prevent opioid use by unintended routes of administration, such as injection of oral opioids. As indicated in FDA guidance for industry on evaluation and labeling of abuse-deterrent opioids (190), although abuse-deterrent technologies are expected to make manipulation of opioids more difficult or less rewarding, they do not prevent opioid abuse through oral intake, the most common route of opioid abuse, and can still be abused by nonoral routes. The “abuse-deterrent” label does not indicate that there is no risk for abuse. No studies were found in the clinical evidence review assessing the effectiveness of abuse-deterrent technologies as a risk mitigation strategy for deterring or preventing abuse. In addition, abuse-deterrent technologies do not prevent unintentional overdose through oral intake. Experts agreed that recommendations could not be offered at this time related to use of abuse-deterrent formulations.

In comparing different ER/LA formulations, the clinical evidence review found inconsistent results for overdose risk with methadone versus other ER/LA opioids used for chronic pain (KQ3). The contextual evidence review found that methadone has been associated with disproportionate numbers of overdose deaths relative to the frequency with which it is prescribed for chronic pain. In addition, methadone is associated with cardiac arrhythmias along with QT prolongation on the electrocardiogram, and it has complicated pharmacokinetics and pharmacodynamics, including a long and variable half-life and peak respiratory depressant effect occurring later and lasting longer than peak analgesic effect. Experts noted that the pharmacodynamics of methadone are subject to more inter-individual variability than other opioids. In regard to other ER/LA opioid formulations, experts noted that the absorption and pharmacodynamics of transdermal fentanyl are complex, with gradually increasing serum concentration during the first part of the 72-hour dosing interval, as well as variable absorption based on factors such as external heat. In addition, the dosing of transdermal fentanyl in mcg/hour, which is not typical for a drug used by outpatients, can be confusing. Experts thought that these complexities might increase the risk for fatal overdose when methadone or transdermal fentanyl is prescribed to a patient who has not used it previously or by clinicians who are not familiar with its effects.

Experts agreed that for patients not already receiving opioids, clinicians should not initiate opioid treatment with ER/LA opioids and should not prescribe ER/LA opioids for intermittent use. ER/LA opioids should be reserved for severe, continuous pain and should be considered only for patients who have received immediate-release opioids daily for at least 1 week. When changing to an ER/LA opioid for a patient previously receiving a different immediate-release opioid, clinicians should consult product labeling and reduce total daily dosage to account for incomplete opioid cross-tolerance. Clinicians should use additional caution with ER/LA opioids and consider a longer dosing interval when prescribing to patients with renal or hepatic dysfunction because decreased clearance of drugs among these patients can lead to accumulation of drugs to toxic levels and persistence in the body for longer durations. Although there might be situations in which clinicians need to prescribe immediate-release and ER/LA opioids together (e.g., transitioning patients from ER/LA opioids to immediate-release opioids by temporarily using lower dosages of both), in general, avoiding the use of immediate-release opioids in combination with ER/LA opioids is preferable, given potentially increased risk and diminishing returns of such an approach for chronic pain.

When an ER/LA opioid is prescribed, using one with predictable pharmacokinetics and pharmacodynamics is preferred to minimize unintentional overdose risk. In particular, unusual characteristics of methadone and of transdermal fentanyl make safe prescribing of these medications for pain especially challenging.

  • Methadone should not be the first choice for an ER/LA opioid. Only clinicians who are familiar with methadone’s unique risk profile and who are prepared to educate and closely monitor their patients, including risk assessment for QT prolongation and consideration of electrocardiographic monitoring, should consider prescribing methadone for pain. A clinical practice guideline that contains further guidance regarding methadone prescribing for pain has been published previously (191).
  • Because dosing effects of transdermal fentanyl are often misunderstood by both clinicians and patients, only clinicians who are familiar with the dosing and absorption properties of transdermal fentanyl and are prepared to educate their patients about its use should consider prescribing it.

5. When opioids are started, clinicians should prescribe the lowest effective dosage. Clinicians should use caution when prescribing opioids at any dosage, should carefully reassess evidence of individual benefits and risks when considering increasing dosage to ≥50 morphine milligram equivalents (MME)/day, and should avoid increasing dosage to ≥90 MME/day or carefully justify a decision to titrate dosage to ≥90 MME/day (recommendation category: A, evidence type: 3).

Benefits of high-dose opioids for chronic pain are not established. The clinical evidence review found only one study (84) addressing effectiveness of dose titration for outcomes related to pain control, function, and quality of life (KQ3). This randomized trial found no difference in pain or function between a more liberal opioid dose escalation strategy and maintenance of current dosage. (These groups were prescribed average dosages of 52 and 40 MME/day, respectively, at the end of the trial.) At the same time, risks for serious harms related to opioid therapy increase at higher opioid dosage. The clinical evidence review found that higher opioid dosages are associated with increased risks for motor vehicle injury, opioid use disorder, and overdose (KQ2). The clinical and contextual evidence reviews found that opioid overdose risk increases in a dose-response manner, that dosages of 50–127).

The contextual evidence review found that although there is not a single dosage threshold below which overdose risk is eliminated, holding dosages

When opioids are used for chronic pain outside of active cancer, palliative, and end-of-life care, clinicians should start opioids at the lowest possible effective dosage (the lowest starting dosage on product labeling for patients not already taking opioids and according to product labeling guidance regarding tolerance for patients already taking opioids). Clinicians should use additional caution when initiating opioids for patients aged ≥65 years and for patients with renal or hepatic insufficiency because decreased clearance of drugs in these patients can result in accumulation of drugs to toxic levels. Clinicians should use caution when increasing opioid dosages and increase dosage by the smallest practical amount because overdose risk increases with increases in opioid dosage. Although there is limited evidence to recommend specific intervals for dosage titration, a previous guideline recommended waiting at least five half-lives before increasing dosage and waiting at least a week before increasing dosage of methadone to make sure that full effects of the previous dosage are evident (31). Clinicians should re-evaluate patients after increasing dosage for changes in pain, function, and risk for harm (see Recommendation 7). Before increasing total opioid dosage to ≥50 MME/day, clinicians should reassess whether opioid treatment is meeting the patient’s treatment goals (see Recommendation 2). If a patient’s opioid dosage for all sources of opioids combined reaches or exceeds 50 MME/day, clinicians should implement additional precautions, including increased frequency of follow-up (see Recommendation 7) and considering offering naloxone and overdose prevention education to both patients and the patients’ household members (see Recommendation 8). Clinicians should avoid increasing opioid dosages to ≥90 MME/day or should carefully justify a decision to increase dosage to ≥90 MME/day based on individualized assessment of benefits and risks and weighing factors such as diagnosis, incremental benefits for pain and function relative to harms as dosages approach 90 MME/day, other treatments and effectiveness, and recommendations based on consultation with pain specialists. If patients do not experience improvement in pain and function at ≥90 MME/day, or if there are escalating dosage requirements, clinicians should discuss other approaches to pain management with the patient, consider working with patients to taper opioids to a lower dosage or to taper and discontinue opioids (see Recommendation 7), and consider consulting a pain specialist. Some states require clinicians to implement clinical protocols at specific dosage levels. For example, before increasing long-term opioid therapy dosage to >120 MME/day, clinicians in Washington state must obtain consultation from a pain specialist who agrees that this is indicated and appropriate (30). Clinicians should be aware of rules related to MME thresholds and associated clinical protocols established by their states.

Established patients already taking high dosages of opioids, as well as patients transferring from other clinicians, might consider the possibility of opioid dosage reduction to be anxiety-provoking, and tapering opioids can be especially challenging after years on high dosages because of physical and psychological dependence. However, these patients should be offered the opportunity to re-evaluate their continued use of opioids at high dosages in light of recent evidence regarding the association of opioid dosage and overdose risk. Clinicians should explain in a nonjudgmental manner to patients already taking high opioid dosages (≥90 MME/day) that there is now an established body of scientific evidence showing that overdose risk is increased at higher opioid dosages. Clinicians should empathically review benefits and risks of continued high-dosage opioid therapy and should offer to work with the patient to taper opioids to safer dosages. For patients who agree to taper opioids to lower dosages, clinicians should collaborate with the patient on a tapering plan (see Recommendation 7). Experts noted that patients tapering opioids after taking them for years might require very slow opioid tapers as well as pauses in the taper to allow gradual accommodation to lower opioid dosages. Clinicians should remain alert to signs of anxiety, depression, and opioid use disorder (see Recommendations 8 and 12) that might be unmasked by an opioid taper and arrange for management of these co-morbidities. For patients agreeing to taper to lower opioid dosages as well as for those remaining on high opioid dosages, clinicians should establish goals with the patient for continued opioid therapy (see Recommendation 2), maximize pain treatment with nonpharmacologic and nonopioid pharmacologic treatments as appropriate (see Recommendation 1), and consider consulting a pain specialist as needed to assist with pain management.

6. Long-term opioid use often begins with treatment of acute pain. When opioids are used for acute pain, clinicians should prescribe the lowest effective dose of immediate-release opioids and should prescribe no greater quantity than needed for the expected duration of pain severe enough to require opioids. Three days or less will often be sufficient; more than seven days will rarely be needed (recommendation category: A, evidence type: 4).

The clinical evidence review found that opioid use for acute pain (i.e., pain with abrupt onset and caused by an injury or other process that is not ongoing) is associated with long-term opioid use, and that a greater amount of early opioid exposure is associated with greater risk for long-term use (KQ5). Several guidelines on opioid prescribing for acute pain from emergency departments (192194) and other settings (195,196) have recommended prescribing ≤3 days of opioids in most cases, whereas others have recommended ≤7 days (197) or 30). Because physical dependence on opioids is an expected physiologic response in patients exposed to opioids for more than a few days (contextual evidence review), limiting days of opioids prescribed also should minimize the need to taper opioids to prevent distressing or unpleasant withdrawal symptoms. Experts noted that more than a few days of exposure to opioids significantly increases hazards, that each day of unnecessary opioid use increases likelihood of physical dependence without adding benefit, and that prescriptions with fewer days’ supply will minimize the number of pills available for unintentional or intentional diversion.

Experts agreed that when opioids are needed for acute pain, clinicians should prescribe opioids at the lowest effective dose and for no longer than the expected duration of pain severe enough to require opioids to minimize unintentional initiation of long-term opioid use. The lowest effective dose can be determined using product labeling as a starting point with calibration as needed based on the severity of pain and on other clinical factors such as renal or hepatic insufficiency (see Recommendation 8). Experts thought, based on clinical experience regarding anticipated duration of pain severe enough to require an opioid, that in most cases of acute pain not related to surgery or trauma, a ≤3 days’ supply of opioids will be sufficient. For example, in one study of the course of acute low back pain (not associated with malignancies, infections, spondylarthropathies, fractures, or neurological signs) in a primary care setting, there was a large decrease in pain until the fourth day after treatment with paracetamol, with smaller decreases thereafter (198). Some experts thought that because some types of acute pain might require more than 3 days of opioid treatment, it would be appropriate to recommend a range of ≤3–5 days or ≤3–7 days when opioids are needed. Some experts thought that a range including 7 days was too long given the expected course of severe acute pain for most acute pain syndromes seen in primary care.

Acute pain can often be managed without opioids. It is important to evaluate the patient for reversible causes of pain, for underlying etiologies with potentially serious sequelae, and to determine appropriate treatment. When the diagnosis and severity of nontraumatic, nonsurgical acute pain are reasonably assumed to warrant the use of opioids, clinicians should prescribe no greater quantity than needed for the expected duration of pain severe enough to require opioids, often 3 days or less, unless circumstances clearly warrant additional opioid therapy. More than 7 days will rarely be needed. Opioid treatment for post-surgical pain is outside the scope of this guideline but has been addressed elsewhere (30). Clinicians should not prescribe additional opioids to patients “just in case” pain continues longer than expected. Clinicians should re-evaluate the subset of patients who experience severe acute pain that continues longer than the expected duration to confirm or revise the initial diagnosis and to adjust management accordingly. Given longer half-lives and longer duration of effects (e.g., respiratory depression) with ER/LA opioids such as methadone, fentanyl patches, or extended release versions of opioids such as oxycodone, oxymorphone, or morphine, clinicians should not prescribe ER/LA opioids for the treatment of acute pain.

7. Clinicians should evaluate benefits and harms with patients within 1 to 4 weeks of starting opioid therapy for chronic pain or of dose escalation. Clinicians should evaluate benefits and harms of continued therapy with patients every 3 months or more frequently. If benefits do not outweigh harms of continued opioid therapy, clinicians should optimize other therapies and work with patients to taper opioids to lower dosages or to taper and discontinue opioids (recommendation category: A, evidence type: 4).

Although the clinical evidence review did not find studies evaluating the effectiveness of more frequent monitoring intervals (KQ4), it did find that continuing opioid therapy for 3 months substantially increases risk for opioid use disorder (KQ2); therefore, follow-up earlier than 3 months might be necessary to provide the greatest opportunity to prevent the development of opioid use disorder. In addition, risk for overdose associated with ER/LA opioids might be particularly high during the first 2 weeks of treatment (KQ3). The contextual evidence review found that patients who do not have pain relief with opioids at 1 month are unlikely to experience pain relief with opioids at 6 months. Although evidence is insufficient to determine at what point within the first 3 months of opioid therapy the risks for opioid use disorder increase, reassessment of pain and function within 1 month of initiating opioids provides an opportunity to minimize risks of long-term opioid use by discontinuing opioids among patients not receiving a clear benefit from these medications. Experts noted that risks for opioid overdose are greatest during the first 3–7 days after opioid initiation or increase in dosage, particularly when methadone or transdermal fentanyl are prescribed; that follow-up within 3 days is appropriate when initiating or increasing the dosage of methadone; and that follow-up within 1 week might be appropriate when initiating or increasing the dosage of other ER/LA opioids.

Clinicians should evaluate patients to assess benefits and harms of opioids within 1 to 4 weeks of starting long-term opioid therapy or of dose escalation. Clinicians should consider follow-up intervals within the lower end of this range when ER/LA opioids are started or increased or when total daily opioid dosage is ≥50 MME/day. Shorter follow-up intervals (within 3 days) should be strongly considered when starting or increasing the dosage of methadone. At follow up, clinicians should assess benefits in function, pain control, and quality of life using tools such as the three-item “Pain average, interference with Enjoyment of life, and interference with General activity” (PEG) Assessment Scale (186) and/or asking patients about progress toward functional goals that have meaning for them (see Recommendation 2). Clinicians should also ask patients about common adverse effects such as constipation and drowsiness (see Recommendation 3), as well as asking about and assessing for effects that might be early warning signs for more serious problems such as overdose (e.g., sedation or slurred speech) or opioid use disorder (e.g., craving, wanting to take opioids in greater quantities or more frequently than prescribed, or difficulty controlling use). Clinicians should ask patients about their preferences for continuing opioids, given their effects on pain and function relative to any adverse effects experienced.

Because of potential changes in the balance of benefits and risks of opioid therapy over time, clinicians should regularly reassess all patients receiving long-term opioid therapy, including patients who are new to the clinician but on long-term opioid therapy, at least every 3 months. At reassessment, clinicians should determine whether opioids continue to meet treatment goals, including sustained improvement in pain and function, whether the patient has experienced common or serious adverse events or early warning signs of serious adverse events, signs of opioid use disorder (e.g., difficulty controlling use, work or family problems related to opioid use), whether benefits of opioids continue to outweigh risks, and whether opioid dosage can be reduced or opioids can be discontinued. Ideally, these reassessments would take place in person and be conducted by the prescribing clinician. In practice contexts where virtual visits are part of standard care (e.g., in remote areas where distance or other issues make follow-up visits challenging), follow-up assessments that allow the clinician to communicate with and observe the patient through video and audio could be conducted, with in-person visits occurring at least once per year. Clinicians should re-evaluate patients who are exposed to greater risk of opioid use disorder or overdose (e.g., patients with depression or other mental health conditions, a history of substance use disorder, a history of overdose, taking ≥50 MME/day, or taking other central nervous system depressants with opioids) more frequently than every 3 months. If clinically meaningful improvements in pain and function are not sustained, if patients are taking high-risk regimens (e.g., dosages ≥50 MME/day or opioids combined with benzodiazepines) without evidence of benefit, if patients believe benefits no longer outweigh risks or if they request dosage reduction or discontinuation, or if patients experience overdose or other serious adverse events (e.g., an event leading to hospitalization or disability) or warning signs of serious adverse events, clinicians should work with patients to reduce opioid dosage or to discontinue opioids when possible. Clinicians should maximize pain treatment with nonpharmacologic and nonopioid pharmacologic treatments as appropriate (see Recommendation 1) and consider consulting a pain specialist as needed to assist with pain management.

Considerations for Tapering Opioids

Although the clinical evidence review did not find high-quality studies comparing the effectiveness of different tapering protocols for use when opioid dosage is reduced or opioids are discontinued (KQ3), tapers reducing weekly dosage by 10%–50% of the original dosage have been recommended by other clinical guidelines (199), and a rapid taper over 2–3 weeks has been recommended in the case of a severe adverse event such as overdose (30). Experts noted that tapers slower than 10% per week (e.g., 10% per month) also might be appropriate and better tolerated than more rapid tapers, particularly when patients have been taking opioids for longer durations (e.g., for years). Opioid withdrawal during pregnancy has been associated with spontaneous abortion and premature labor.

When opioids are reduced or discontinued, a taper slow enough to minimize symptoms and signs of opioid withdrawal (e.g., drug craving, anxiety, insomnia, abdominal pain, vomiting, diarrhea, diaphoresis, mydriasis, tremor, tachycardia, or piloerection) should be used. A decrease of 10% of the original dose per week is a reasonable starting point; experts agreed that tapering plans may be individualized based on patient goals and concerns. Experts noted that at times, tapers might have to be paused and restarted again when the patient is ready and might have to be slowed once patients reach low dosages. Tapers may be considered successful as long as the patient is making progress. Once the smallest available dose is reached, the interval between doses can be extended. Opioids may be stopped when taken less frequently than once a day. More rapid tapers might be needed for patient safety under certain circumstances (e.g., for patients who have experienced overdose on their current dosage). Ultrarapid detoxification under anesthesia is associated with substantial risks, including death, and should not be used (200). Clinicians should access appropriate expertise if considering tapering opioids during pregnancy because of possible risk to the pregnant patient and to the fetus if the patient goes into withdrawal. Patients who are not taking opioids (including patients who are diverting all opioids they obtain) do not require tapers. Clinicians should discuss with patients undergoing tapering the increased risk for overdose on abrupt return to a previously prescribed higher dose. Primary care clinicians should collaborate with mental health providers and with other specialists as needed to optimize nonopioid pain management (see Recommendation 1), as well as psychosocial support for anxiety related to the taper. More detailed guidance on tapering, including management of withdrawal symptoms has been published previously (30,201). If a patient exhibits signs of opioid use disorder, clinicians should offer or arrange for treatment of opioid use disorder (see Recommendation 12) and consider offering naloxone for overdose prevention (see Recommendation 8).

Assessing Risk and Addressing Harms of Opioid Use

8. Before starting and periodically during continuation of opioid therapy, clinicians should evaluate risk factors for opioid-related harms. Clinicians should incorporate into the management plan strategies to mitigate risk, including considering offering naloxone when factors that increase risk for opioid overdose, such as history of overdose, history of substance use disorder, higher opioid dosages (50 MME/day), or concurrent benzodiazepine use, are present (recommendation category: A, evidence type: 4).

The clinical evidence review found insufficient evidence to determine how harms of opioids differ depending on patient demographics or patient comorbidities (KQ2). However, based on the contextual evidence review and expert opinion, certain risk factors are likely to increase susceptibility to opioid-associated harms and warrant incorporation of additional strategies into the management plan to mitigate risk. Clinicians should assess these risk factors periodically, with frequency varying by risk factor and patient characteristics. For example, factors that vary more frequently over time, such as alcohol use, require more frequent follow up. In addition, clinicians should consider offering naloxone, re-evaluating patients more frequently (see Recommendation 7), and referring to pain and/or behavioral health specialists when factors that increase risk for harm, such as history of overdose, history of substance use disorder, higher dosages of opioids (≥50 MME/day), and concurrent use of benzodiazepines with opioids, are present.

Patients with Sleep-Disordered Breathing, Including Sleep Apnea

Risk factors for sleep-disordered breathing include congestive heart failure, and obesity. Experts noted that careful monitoring and cautious dose titration should be used if opioids are prescribed for patients with mild sleep-disordered breathing. Clinicians should avoid prescribing opioids to patients with moderate or severe sleep-disordered breathing whenever possible to minimize risks for opioid overdose (contextual evidence review).

Pregnant Women

Opioids used in pregnancy might be associated with additional risks to both mother and fetus. Some studies have shown an association of opioid use in pregnancy with stillbirth, poor fetal growth, pre-term delivery, and birth defects (contextual evidence review). Importantly, in some cases, opioid use during pregnancy leads to neonatal opioid withdrawal syndrome. Clinicians and patients together should carefully weigh risks and benefits when making decisions about whether to initiate opioid therapy for chronic pain during pregnancy. In addition, before initiating opioid therapy for chronic pain for reproductive-age women, clinicians should discuss family planning and how long-term opioid use might affect any future pregnancy. For pregnant women already receiving opioids, clinicians should access appropriate expertise if considering tapering opioids because of possible risk to the pregnant patient and to the fetus if the patient goes into withdrawal (see Recommendation 7). For pregnant women with opioid use disorder, medication-assisted therapy with buprenorphine or methadone has been associated with improved maternal outcomes and should be offered (202) (see Recommendation 12). Clinicians caring for pregnant women receiving opioids for pain or receiving buprenorphine or methadone for opioid use disorder should arrange for delivery at a facility prepared to monitor, evaluate for, and treat neonatal opioid withdrawal syndrome. In instances when travel to such a facility would present an undue burden on the pregnant woman, it is appropriate to deliver locally, monitor and evaluate the newborn for neonatal opioid withdrawal syndrome, and transfer the newborn for additional treatment if needed. Neonatal toxicity and death have been reported in breast-feeding infants whose mothers are taking codeine (contextual evidence review); previous guidelines have recommended that codeine be avoided whenever possible among mothers who are breast feeding and, if used, should be limited to the lowest possible dose and to a 4-day supply (203).

Patients with Renal or Hepatic Insufficiency

Clinicians should use additional caution and increased monitoring (see Recommendation 7) to minimize risks of opioids prescribed for patients with renal or hepatic insufficiency, given their decreased ability to process and excrete drugs, susceptibility to accumulation of opioids, and reduced therapeutic window between safe dosages and dosages associated with respiratory depression and overdose (contextual evidence review; see Recommendations 4, 5, and 7).

Patients Aged ≥65 Years

Inadequate pain treatment among persons aged ≥65 years has been documented (204). Pain management for older patients can be challenging given increased risks of both nonopioid pharmacologic therapies (see Recommendation 1) and opioid therapy in this population. Given reduced renal function and medication clearance even in the absence of renal disease, patients aged ≥65 years might have increased susceptibility to accumulation of opioids and a smaller therapeutic window between safe dosages and dosages associated with respiratory depression and overdose (contextual evidence review). Some older adults suffer from cognitive impairment, which can increase risk for medication errors and make opioid-related confusion more dangerous. In addition, older adults are more likely than younger adults to experience co-morbid medical conditions and more likely to receive multiple medications, some of which might interact with opioids (such as benzodiazepines). Clinicians should use additional caution and increased monitoring (see Recommendations 4, 5, and 7) to minimize risks of opioids prescribed for patients aged ≥65 years. Experts suggested that clinicians educate older adults receiving opioids to avoid risky medication-related behaviors such as obtaining controlled medications from multiple prescribers and saving unused medications. Clinicians should also implement interventions to mitigate common risks of opioid therapy among older adults, such as exercise or bowel regimens to prevent constipation, risk assessment for falls, and patient monitoring for cognitive impairment.

Patients with Mental Health Conditions

Because psychological distress frequently interferes with improvement of pain and function in patients with chronic pain, using validated instruments such as the Generalized Anxiety Disorder (GAD)-7 and the Patient Health Questionnaire (PHQ)-9 or the PHQ-4 to assess for anxiety, post-traumatic stress disorder, and/or depression (205), might help clinicians improve overall pain treatment outcomes. Experts noted that clinicians should use additional caution and increased monitoring (see Recommendation 7) to lessen the increased risk for opioid use disorder among patients with mental health conditions (including depression, anxiety disorders, and PTSD), as well as increased risk for drug overdose among patients with depression. Previous guidelines have noted that opioid therapy should not be initiated during acute psychiatric instability or uncontrolled suicide risk, and that clinicians should consider behavioral health specialist consultation for any patient with a history of suicide attempt or psychiatric disorder (31). In addition, patients with anxiety disorders and other mental health conditions are more likely to receive benzodiazepines, which can exacerbate opioid-induced respiratory depression and increase risk for overdose (see Recommendation 11). Clinicians should ensure that treatment for depression and other mental health conditions is optimized, consulting with behavioral health specialists when needed. Treatment for depression can improve pain symptoms as well as depression and might decrease overdose risk (contextual evidence review). For treatment of chronic pain in patients with depression, clinicians should strongly consider using tricyclic or SNRI antidepressants for analgesic as well as antidepressant effects if these medications are not otherwise contraindicated (see Recommendation 1).

Patients with Substance Use Disorder

Illicit drugs and alcohol are listed as contributory factors on a substantial proportion of death certificates for opioid-related overdose deaths (contextual evidence review). Previous guidelines have recommended screening or risk assessment tools to identify patients at higher risk for misuse or abuse of opioids. However, the clinical evidence review found that currently available risk-stratification tools (e.g., Opioid Risk Tool, Screener and Opioid Assessment for Patients with Pain Version 1, SOAPP-R, and Brief Risk Interview) show insufficient accuracy for classification of patients as at low or high risk for abuse or misuse (KQ4). Clinicians should always exercise caution when considering or prescribing opioids for any patient with chronic pain outside of active cancer, palliative, and end-of-life care and should not overestimate the ability of these tools to rule out risks from long-term opioid therapy.

Clinicians should ask patients about their drug and alcohol use. Single screening questions can be used (206). For example, the question “How many times in the past year have you used an illegal drug or used a prescription medication for nonmedical reasons?” (with an answer of one or more considered positive) was found in a primary care setting to be 100% sensitive and 73.5% specific for the detection of a drug use disorder compared with a standardized diagnostic interview (207). Validated screening tools such as the Drug Abuse Screening Test (DAST) (208) and the Alcohol Use Disorders Identification Test (AUDIT) (209) can also be used. Clinicians should use PDMP data (see Recommendation 9) and drug testing (see Recommendation 10) as appropriate to assess for concurrent substance use that might place patients at higher risk for opioid use disorder and overdose. Clinicians should also provide specific counseling on increased risks for overdose when opioids are combined with other drugs or alcohol (see Recommendation 3) and ensure that patients receive effective treatment for substance use disorders when needed (see Recommendation 12).

The clinical evidence review found insufficient evidence to determine how harms of opioids differ depending on past or current substance use disorder (KQ2), although a history of substance use disorder was associated with misuse. Similarly, based on contextual evidence, patients with drug or alcohol use disorders are likely to experience greater risks for opioid use disorder and overdose than persons without these conditions. If clinicians consider opioid therapy for chronic pain outside of active cancer, palliative, and end-of-life care for patients with drug or alcohol use disorders, they should discuss increased risks for opioid use disorder and overdose with patients, carefully consider whether benefits of opioids outweigh increased risks, and incorporate strategies to mitigate risk into the management plan, such as considering offering naloxone (see Offering Naloxone to Patients When Factors That Increase Risk for Opioid-Related Harms Are Present) and increasing frequency of monitoring (see Recommendation 7) when opioids are prescribed. Because pain management in patients with substance use disorder can be complex, clinicians should consider consulting substance use disorder specialists and pain specialists regarding pain management for persons with active or recent past history of substance abuse. Experts also noted that clinicians should communicate with patients’ substance use disorder treatment providers if opioids are prescribed.

Patients with Prior Nonfatal Overdose

Although studies were not identified that directly addressed the risk for overdose among patients with prior nonfatal overdose who are prescribed opioids, based on clinical experience, experts thought that prior nonfatal overdose would substantially increase risk for future nonfatal or fatal opioid overdose. If patients experience nonfatal opioid overdose, clinicians should work with them to reduce opioid dosage and to discontinue opioids when possible (see Recommendation 7). If clinicians continue opioid therapy for chronic pain outside of active cancer, palliative, and end-of-life care in patients with prior opioid overdose, they should discuss increased risks for overdose with patients, carefully consider whether benefits of opioids outweigh substantial risks, and incorporate strategies to mitigate risk into the management plan, such as considering offering naloxone (see Offering Naloxone to Patients When Factors That Increase Risk for Opioid-Related Harms Are Present) and increasing frequency of monitoring (see Recommendation 7) when opioids are prescribed.

Offering Naloxone to Patients When Factors That Increase Risk for Opioid-Related Harms Are Present

Naloxone is an opioid antagonist that can reverse severe respiratory depression; its administration by lay persons, such as friends and family of persons who experience opioid overdose, can save lives. Naloxone precipitates acute withdrawal among patients physically dependent on opioids. Serious adverse effects, such as pulmonary edema, cardiovascular instability, and seizures, have been reported but are rare at doses consistent with labeled use for opioid overdose (210). The contextual evidence review did not find any studies on effectiveness of prescribing naloxone for overdose prevention among patients prescribed opioids for chronic pain. However, there is evidence for effectiveness of naloxone provision in preventing opioid-related overdose death at the community level through community-based distribution (e.g., through overdose education and naloxone distribution programs in community service agencies) to persons at risk for overdose (mostly due to illicit opiate use), and it is plausible that effectiveness would be observed when naloxone is provided in the clinical setting as well. Experts agreed that it is preferable not to initiate opioid treatment when factors that increase risk for opioid-related harms are present. Opinions diverged about the likelihood of naloxone being useful to patients and the circumstances under which it should be offered. However, most experts agreed that clinicians should consider offering naloxone when prescribing opioids to patients at increased risk for overdose, including patients with a history of overdose, patients with a history of substance use disorder, patients taking benzodiazepines with opioids (see Recommendation 11), patients at risk for returning to a high dose to which they are no longer tolerant (e.g., patients recently released from prison), and patients taking higher dosages of opioids (≥50 MME/day). Practices should provide education on overdose prevention and naloxone use to patients receiving naloxone prescriptions and to members of their households. Experts noted that naloxone co-prescribing can be facilitated by clinics or practices with resources to provide naloxone training and by collaborative practice models with pharmacists. Resources for prescribing naloxone in primary care settings can be found through Prescribe to Prevent at http://prescribetoprevent.org.

9. Clinicians should review the patient’s history of controlled substance prescriptions using state prescription drug monitoring program (PDMP) data to determine whether the patient is receiving opioid dosages or dangerous combinations that put him or her at high risk for overdose. Clinicians should review PDMP data when starting opioid therapy for chronic pain and periodically during opioid therapy for chronic pain, ranging from every prescription to every 3 months (recommendation category: A, evidence type: 4).

PDMPs are state-based databases that collect information on controlled prescription drugs dispensed by pharmacies in most states and, in select states, by dispensing physicians as well. In addition, some clinicians employed by the federal government, including some clinicians in the Indian Health Care Delivery System, are not licensed in the states where they practice, and do not have access to PDMP data. Certain states require clinicians to review PDMP data prior to writing each opioid prescription (see state-level PDMP-related policies on the National Alliance for Model State Drug Laws website at http://www.namsdl.org/prescription-monitoring-programs.cfm). The clinical evidence review did not find studies evaluating the effectiveness of PDMPs on outcomes related to overdose, addiction, abuse, or misuse (KQ4). However, even though evidence is limited on the effectiveness of PDMP implementation at the state level on prescribing and mortality outcomes (28), the contextual evidence review found that most fatal overdoses were associated with patients receiving opioids from multiple prescribers and/or with patients receiving high total daily opioid dosages; information on both of these risk factors for overdose are available to prescribers in the PDMP. PDMP data also can be helpful when patient medication history is not otherwise available (e.g., for patients from other locales) and when patients transition care to a new clinician. The contextual evidence review also found that PDMP information could be used in a way that is harmful to patients. For example, it has been used to dismiss patients from clinician practices (211), which might adversely affect patient safety.

The contextual review found variation in state policies that affect timeliness of PDMP data (and therefore benefits of reviewing PDMP data) as well as time and workload for clinicians in accessing PDMP data. In states that permit delegating access to other members of the health care team, workload for prescribers can be reduced. These differences might result in a different balance of benefits to clinician workload in different states. Experts agreed that PDMPs are useful tools that should be consulted when starting a patient on opioid therapy and periodically during long-term opioid therapy. However, experts disagreed on how frequently clinicians should check the PDMP during long-term opioid therapy, given PDMP access issues and the lag time in reporting in some states. Most experts agreed that PDMP data should be reviewed every 3 months or more frequently during long-term opioid therapy. A minority of experts noted that, given the current burden of accessing PDMP data in some states and the lack of evidence surrounding the most effective interval for PDMP review to improve patient outcomes, annual review of PDMP data during long-term opioid therapy would be reasonable when factors that increase risk for opioid-related harms are not present.

Clinicians should review PDMP data for opioids and other controlled medications patients might have received from additional prescribers to determine whether a patient is receiving high total opioid dosages or dangerous combinations (e.g., opioids combined with benzodiazepines) that put him or her at high risk for overdose. Ideally, PDMP data should be reviewed before every opioid prescription. This is recommended in all states with well-functioning PDMPs and where PDMP access policies make this practicable (e.g., clinician and delegate access permitted), but it is not currently possible in states without functional PDMPs or in those that do not permit certain prescribers to access them. As vendors and practices facilitate integration of PDMP information into regular clinical workflow (e.g., data made available in electronic health records), clinicians’ ease of access in reviewing PDMP data is expected to improve. In addition, improved timeliness of PDMP data will improve their value in identifying patient risks.

If patients are found to have high opioid dosages, dangerous combinations of medications, or multiple controlled substance prescriptions written by different clinicians, several actions can be taken to augment clinicians’ abilities to improve patient safety:

  • Clinicians should discuss information from the PDMP with their patient and confirm that the patient is aware of the additional prescriptions. Occasionally, PDMP information can be incorrect (e.g., if the wrong name or birthdate has been entered, the patient uses a nickname or maiden name, or another person has used the patient’s identity to obtain prescriptions).
  • Clinicians should discuss safety concerns, including increased risk for respiratory depression and overdose, with patients found to be receiving opioids from more than one prescriber or receiving medications that increase risk when combined with opioids (e.g., benzodiazepines) and consider offering naloxone (see Recommendation 8).
  • Clinicians should avoid prescribing opioids and benzodiazepines concurrently whenever possible. Clinicians should communicate with others managing the patient to discuss the patient’s needs, prioritize patient goals, weigh risks of concurrent benzodiazepine and opioid exposure, and coordinate care (see Recommendation 11).
  • Clinicians should calculate the total MME/day for concurrent opioid prescriptions to help assess the patient’s overdose risk (see Recommendation 5). If patients are found to be receiving high total daily dosages of opioids, clinicians should discuss their safety concerns with the patient, consider tapering to a safer dosage (see Recommendations 5 and 7), and consider offering naloxone (see Recommendation 8).
  • Clinicians should discuss safety concerns with other clinicians who are prescribing controlled substances for their patient. Ideally clinicians should first discuss concerns with their patient and inform him or her that they plan to coordinate care with the patient’s other prescribers to improve the patient’s safety.
  • Clinicians should consider the possibility of a substance use disorder and discuss concerns with their patient (see Recommendation 12).
  • If clinicians suspect their patient might be sharing or selling opioids and not taking them, clinicians should consider urine drug testing to assist in determining whether opioids can be discontinued without causing withdrawal (see Recommendations 7 and 10). A negative drug test for prescribed opioids might indicate the patient is not taking prescribed opioids, although clinicians should consider other possible reasons for this test result (see Recommendation 10).

Experts agreed that clinicians should not dismiss patients from their practice on the basis of PDMP information. Doing so can adversely affect patient safety, could represent patient abandonment, and could result in missed opportunities to provide potentially lifesaving information (e.g., about risks of opioids and overdose prevention) and interventions (e.g., safer prescriptions, nonopioid pain treatment [see Recommendation 1], naloxone [see Recommendation 8], and effective treatment for substance use disorder [see Recommendation 12]).

10. When prescribing opioids for chronic pain, clinicians should use urine drug testing before starting opioid therapy and consider urine drug testing at least annually to assess for prescribed medications as well as other controlled prescription drugs and illicit drugs (recommendation category: B, evidence type: 4).

Concurrent use of opioid pain medications with other opioid pain medications, benzodiazepines, or heroin can increase patients’ risk for overdose. Urine drug tests can provide information about drug use that is not reported by the patient. In addition, urine drug tests can assist clinicians in identifying when patients are not taking opioids prescribed for them, which might in some cases indicate diversion or other clinically important issues such as difficulties with adverse effects. Urine drug tests do not provide accurate information about how much or what dose of opioids or other drugs a patient took. The clinical evidence review did not find studies evaluating the effectiveness of urine drug screening for risk mitigation during opioid prescribing for pain (KQ4). The contextual evidence review found that urine drug testing can provide useful information about patients assumed not to be using unreported drugs. Urine drug testing results can be subject to misinterpretation and might sometimes be associated with practices that might harm patients (e.g., stigmatization, inappropriate termination from care). Routine use of urine drug tests with standardized policies at the practice or clinic level might destigmatize their use. Although random drug testing also might destigmatize urine drug testing, experts thought that truly random testing was not feasible in clinical practice. Some clinics obtain a urine specimen at every visit, but only send it for testing on a random schedule. Experts noted that in addition to direct costs of urine drug testing, which often are not covered fully by insurance and can be a burden for patients, clinician time is needed to interpret, confirm, and communicate results.

Experts agreed that prior to starting opioids for chronic pain and periodically during opioid therapy, clinicians should use urine drug testing to assess for prescribed opioids as well as other controlled substances and illicit drugs that increase risk for overdose when combined with opioids, including nonprescribed opioids, benzodiazepines, and heroin. There was some difference of opinion among experts as to whether this recommendation should apply to all patients, or whether this recommendation should entail individual decision making with different choices for different patients based on values, preferences, and clinical situations. While experts agreed that clinicians should use urine drug testing before initiating opioid therapy for chronic pain, they disagreed on how frequently urine drug testing should be conducted during long-term opioid therapy. Most experts agreed that urine drug testing at least annually for all patients was reasonable. Some experts noted that this interval might be too long in some cases and too short in others, and that the follow-up interval should be left to the discretion of the clinician. Previous guidelines have recommended more frequent urine drug testing in patients thought to be at higher risk for substance use disorder (30). However, experts thought that predicting risk prior to urine drug testing is challenging and that currently available tools do not allow clinicians to reliably identify patients who are at low risk for substance use disorder.

In most situations, initial urine drug testing can be performed with a relatively inexpensive immunoassay panel for commonly prescribed opioids and illicit drugs. Patients prescribed less commonly used opioids might require specific testing for those agents. The use of confirmatory testing adds substantial costs and should be based on the need to detect specific opioids that cannot be identified on standard immunoassays or on the presence of unexpected urine drug test results. Clinicians should be familiar with the drugs included in urine drug testing panels used in their practice and should understand how to interpret results for these drugs. For example, a positive “opiates” immunoassay detects morphine, which might reflect patient use of morphine, codeine, or heroin, but this immunoassay does not detect synthetic opioids (e.g., fentanyl or methadone) and might not detect semisynthetic opioids (e.g., oxycodone). However, many laboratories use an oxycodone immunoassay that detects oxycodone and oxymorphone. In some cases, positive results for specific opioids might reflect metabolites from opioids the patient is taking and might not mean the patient is taking the specific opioid for which the test was positive. For example, hydromorphone is a metabolite of hydrocodone, and oxymorphone is a metabolite of oxycodone. Detailed guidance on interpretation of urine drug test results, including which tests to order and expected results, drug detection time in urine, drug metabolism, and other considerations has been published previously (30). Clinicians should not test for substances for which results would not affect patient management or for which implications for patient management are unclear. For example, experts noted that there might be uncertainty about the clinical implications of a positive urine drug test for tetrahyrdocannabinol (THC). In addition, restricting confirmatory testing to situations and substances for which results can reasonably be expected to affect patient management can reduce costs of urine drug testing, given the substantial costs associated with confirmatory testing methods. Before ordering urine drug testing, clinicians should have a plan for responding to unexpected results. Clinicians should explain to patients that urine drug testing is intended to improve their safety and should also explain expected results (e.g., presence of prescribed medication and absence of drugs, including illicit drugs, not reported by the patient). Clinicians should ask patients about use of prescribed and other drugs and ask whether there might be unexpected results. This will provide an opportunity for patients to provide information about changes in their use of prescribed opioids or other drugs. Clinicians should discuss unexpected results with the local laboratory or toxicologist and with the patient. Discussion with patients prior to specific confirmatory testing can sometimes yield a candid explanation of why a particular substance is present or absent and obviate the need for expensive confirmatory testing on that visit. For example, a patient might explain that the test is negative for prescribed opioids because she felt opioids were no longer helping and discontinued them. If unexpected results are not explained, a confirmatory test using a method selective enough to differentiate specific opioids and metabolites (e.g., gas or liquid chromatography/mass spectrometry) might be warranted to clarify the situation.

Clinicians should use unexpected results to improve patient safety (e.g., change in pain management strategy [see Recommendation 1], tapering or discontinuation of opioids [see Recommendation 7], more frequent re-evaluation [see Recommendation 7], offering naloxone [see Recommendation 8], or referral for treatment for substance use disorder [see Recommendation 12], all as appropriate). If tests for prescribed opioids are repeatedly negative, confirming that the patient is not taking the prescribed opioid, clinicians can discontinue the prescription without a taper. Clinicians should not dismiss patients from care based on a urine drug test result because this could constitute patient abandonment and could have adverse consequences for patient safety, potentially including the patient obtaining opioids from alternative sources and the clinician missing opportunities to facilitate treatment for substance use disorder.

11. Clinicians should avoid prescribing opioid pain medication and benzodiazepines concurrently whenever possible (recommendation category: A, evidence type: 3).

Benzodiazepines and opioids both cause central nervous system depression and can decrease respiratory drive. Concurrent use is likely to put patients at greater risk for potentially fatal overdose. The clinical evidence review did not address risks of benzodiazepine co-prescription among patients prescribed opioids. However, the contextual evidence review found evidence in epidemiologic series of concurrent benzodiazepine use in large proportions of opioid-related overdose deaths, and a case-cohort study found concurrent benzodiazepine prescription with opioid prescription to be associated with a near quadrupling of risk for overdose death compared with opioid prescription alone (212). Experts agreed that although there are circumstances when it might be appropriate to prescribe opioids to a patient receiving benzodiazepines (e.g., severe acute pain in a patient taking long-term, stable low-dose benzodiazepine therapy), clinicians should avoid prescribing opioids and benzodiazepines concurrently whenever possible. In addition, given that other central nervous system depressants (e.g., muscle relaxants, hypnotics) can potentiate central nervous system depression associated with opioids, clinicians should consider whether benefits outweigh risks of concurrent use of these drugs. Clinicians should check the PDMP for concurrent controlled medications prescribed by other clinicians (see Recommendation 9) and should consider involving pharmacists and pain specialists as part of the management team when opioids are co-prescribed with other central nervous system depressants. Because of greater risks of benzodiazepine withdrawal relative to opioid withdrawal, and because tapering opioids can be associated with anxiety, when patients receiving both benzodiazepines and opioids require tapering to reduce risk for fatal respiratory depression, it might be safer and more practical to taper opioids first (see Recommendation 7). Clinicians should taper benzodiazepines gradually if discontinued because abrupt withdrawal can be associated with rebound anxiety, hallucinations, seizures, delirium tremens, and, in rare cases, death (contextual evidence review). A commonly used tapering schedule that has been used safely and with moderate success is a reduction of the benzodiazepine dose by 25% every 1–2 weeks (213,214). CBT increases tapering success rates and might be particularly helpful for patients struggling with a benzodiazepine taper (213). If benzodiazepines prescribed for anxiety are tapered or discontinued, or if patients receiving opioids require treatment for anxiety, evidence-based psychotherapies (e.g., CBT) and/or specific anti-depressants or other nonbenzodiazepine medications approved for anxiety should be offered. Experts emphasized that clinicians should communicate with mental health professionals managing the patient to discuss the patient’s needs, prioritize patient goals, weigh risks of concurrent benzodiazepine and opioid exposure, and coordinate care.

12. Clinicians should offer or arrange evidence-based treatment (usually medication-assisted treatment with buprenorphine or methadone in combination with behavioral therapies) for patients with opioid use disorder (recommendation category: A, evidence type: 2).

Opioid use disorder (previously classified as opioid abuse or opioid dependence) is defined in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) as a problematic pattern of opioid use leading to clinically significant impairment or distress, manifested by at least two defined criteria occurring within a year (http://pcssmat.org/wp-content/uploads/2014/02/5B-DSM-5-Opioid-Use-Disorder-Diagnostic-Criteria.pdf) (20).

The clinical evidence review found prevalence of opioid dependence (using DSM-IV diagnosis criteria) in primary care settings among patients with chronic pain on opioid therapy to be 3%–26% (KQ2). As found in the contextual evidence review and supported by moderate quality evidence, opioid agonist or partial agonist treatment with methadone maintenance therapy or buprenorphine has been shown to be more effective in preventing relapse among patients with opioid use disorder (151153). Some studies suggest that using behavioral therapies in combination with these treatments can reduce opioid misuse and increase retention during maintenance therapy and improve compliance after detoxification (154,155); behavioral therapies are also recommended by clinical practice guidelines (215). The cited studies primarily evaluated patients with a history of illicit opioid use, rather than prescription opioid use for chronic pain. Recent studies among patients with prescription opioid dependence (based on DSM-IV criteria) have found maintenance therapy with buprenorphine and buprenorphine-naloxone effective in preventing relapse (216,217). Treatment need in a community is often not met by capacity to provide buprenorphine or methadone maintenance therapy (218), and patient cost can be a barrier to buprenorphine treatment because insurance coverage of buprenorphine for opioid use disorder is often limited (219). Oral or long-acting injectable formulations of naltrexone can also be used as medication-assisted treatment for opioid use disorder in nonpregnant adults, particularly for highly motivated persons (220,221). Experts agreed that clinicians prescribing opioids should identify treatment resources for opioid use disorder in the community and should work together to ensure sufficient treatment capacity for opioid use disorder at the practice level.

If clinicians suspect opioid use disorder based on patient concerns or behaviors or on findings in prescription drug monitoring program data (see Recommendation 9) or from urine drug testing (see Recommendation 10), they should discuss their concern with their patient and provide an opportunity for the patient to disclose related concerns or problems. Clinicians should assess for the presence of opioid use disorder using DSM-5 criteria (20). Alternatively, clinicians can arrange for a substance use disorder treatment specialist to assess for the presence of opioid use disorder. For patients meeting criteria for opioid use disorder, clinicians should offer or arrange for patients to receive evidence-based treatment, usually medication-assisted treatment with buprenorphine or methadone maintenance therapy in combination with behavioral therapies. Oral or long-acting injectable naltrexone, a long-acting opioid antagonist, can also be used in non-pregnant adults. Naltrexone blocks the effects of opioids if they are used but requires adherence to daily oral therapy or monthly injections. For pregnant women with opioid use disorder, medication-assisted therapy with buprenorphine (without naloxone) or methadone has been associated with improved maternal outcomes and should be offered (see Recommendation 8). Clinicians should also consider offering naloxone for overdose prevention to patients with opioid use disorder (see Recommendation 8). For patients with problematic opioid use that does not meet criteria for opioid use disorder, experts noted that clinicians can offer to taper and discontinue opioids (see Recommendation 7). For patients who choose to but are unable to taper, clinicians may reassess for opioid use disorder and offer opioid agonist therapy if criteria are met.

Physicians not already certified to provide buprenorphine in an office-based setting can undergo training to receive a waiver from the Substance Abuse and Mental Health Services Administration (SAMHSA) that allows them to prescribe buprenorphine to treat patients with opioid use disorder. Physicians prescribing opioids in communities without sufficient treatment capacity for opioid use disorder should strongly consider obtaining this waiver. Information about qualifications and the process to obtain a waiver are available from SAMHSA (222). Clinicians do not need a waiver to offer naltrexone for opioid use disorder as part of their practice.

Additional guidance has been published previously (215) on induction, use, and monitoring of buprenorphine treatment (see Part 5) and naltrexone treatment (see Part 6) for opioid use disorder and on goals, components of, and types of effective psychosocial treatment that are recommended in conjunction with pharmacological treatment of opioid use disorder (see Part 7). Clinicians unable to provide treatment themselves should arrange for patients with opioid use disorder to receive care from a substance use disorder treatment specialist, such as an office-based buprenorphine or naltrexone treatment provider, or from an opioid treatment program certified by SAMHSA to provide supervised medication-assisted treatment for patients with opioid use disorder. Clinicians should assist patients in finding qualified treatment providers and should arrange for patients to follow up with these providers, as well as arranging for ongoing coordination of care. Clinicians should not dismiss patients from their practice because of a substance use disorder because this can adversely affect patient safety and could represent patient abandonment. Identification of substance use disorder represents an opportunity for a clinician to initiate potentially life-saving interventions, and it is important for the clinician to collaborate with the patient regarding their safety to increase the likelihood of successful treatment. In addition, although identification of an opioid use disorder can alter the expected benefits and risks of opioid therapy for pain, patients with co-occurring pain and substance use disorder require ongoing pain management that maximizes benefits relative to risks. Clinicians should continue to use nonpharmacologic and nonopioid pharmacologic pain treatments as appropriate (see Recommendation 1) and consider consulting a pain specialist as needed to provide optimal pain management.

Resources to help with arranging for treatment include SAMHSA’s buprenorphine physician locator (http://buprenorphine.samhsa.gov/bwns_locator); SAMHSA’s Opioid Treatment Program Directory (http://dpt2.samhsa.gov/treatment/directory.aspx); SAMHSA’s Provider Clinical Support System for Opioid Therapies (http://pcss-o.org), which offers extensive experience in the treatment of substance use disorders and specifically of opioid use disorder, as well as expertise on the interface of pain and opioid misuse; and SAMHSA’s Provider’s Clinical Support System for Medication-Assisted Treatment (http://pcssmat.org), which offers expert physician mentors to answer questions about assessment for and treatment of substance use disorders.


Box 1: Summary of Recommendations

Recommendation Category Evidence Type
1. Nonpharmacologic and nonopioid therapy preferred for chronic pain A 3
2. Establish treatment goals before starting opioid therapy A 4
3. Discuss risks and benefits with patients A 3
4. Prescribe immediate-release opioids A 4
5. Prescribe lowest effective dosage A 3
6. Limit quantity and duration for acute pain A 4
7. Evaluate benefits and harms regularly A 4
8. Assess risk factors and offer naloxone A 4
9. Review PDMP data A 4
10. Consider urine drug testing B 4
11. Avoid prescribing opioids and benzodiazepines concurrently A 3
12. Offer treatment for opioid use disorder A 2

Box 2: Categories and Evidence Types for Recommendations

Recommendation Categories:

  • Category A: Strong recommendation. Most patients should receive the recommended course of action.
  • Category B: Moderate recommendation. Different choices will be appropriate for different patients. Clinicians need to help patients make decisions consistent with their values and clinical situations.

Evidence Types:

  • Type 1: Evidence from randomized controlled trials or meta-analyses of randomized controlled trials.
  • Type 2: Evidence from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.
  • Type 3: Evidence from time series comparisons with control groups, dramatic results in uncontrolled experiments, or well-designed studies from more than one group.
  • Type 4: Evidence from expert opinion.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *